802.11 Wireless Ethernet as a Process Control Network Backbone

Jim Ralston
ProSoft Technology
Strategic Product Manager - Wireless
• Jim Ralston
 – **Strategic Product Manager - Wireless**
 – Over 16 years in Industrial Wireless market
 – Field Engineering/Support
 – Wireless System Design
 – Sales
 – Product Marketing
 – Resides in Pittsburgh, PA
 – Married with 2 teen children
 – Eldest a freshman in the EE program at WVU
Topics

- Ethernet in Process Control
- Benefits of 802.11 Wireless Ethernet
- Comparison of 802.11 wireless standards
- Wireless design considerations
- CFE Geothermal Power Generation Project
- Frontier Well Head & Refinery Wireless Project
- Questions?
Popularity of Industrial Ethernet

• Industrial Ethernet popularity growing…
 – Field proven
 – ModBus TCP/IP, EtherNet/IP protocols

• High speed, low latency network
 – 100/1000Base-T

• Open standard, commercially available hardware (lower cost)

• Accommodates multiple data types
 – Process, commands, workstation, video, IT
Challenges of Ethernet Infrastructure

- Older plants = No network infrastructure
- Ethernet copper links limited in distance
 - 100 meter limit
- Longer runs require Fiber Optics
 - FO Cables, FO Repeaters/Switches
- Very high cost of conduit design & installation
- Fiber cable subject to environmental damage
 - Where is the break? Time to repair?
- High cost may limit system scope
Benefits of Wireless 802.11

- **Saves money by reducing plant wiring costs**
 - Plant wire installation may cost as much as $100 to $2,000 per foot!
 - 802.11 supports long links (2+ km)

- **Saves time**
 - No cable to install

- **Redundancy**
 - Economic self-healing networking

- **Support for mobile workers**
 - Wi-fi enabled workstations, laptops, SmartPhones, etc
IEEE 802.11a/g/n Technologies

• Open standard – “Wi-Fi”
 – OFDM modulation
 – 20 MHz Wide channel = fast data rate (up to 150 mbps)
 – Low latency - microseconds
 – CDMA (collision detection – listen first)
802.11g/n Frequency Channels

RF Bands –2.4 to 2.483 GHz (83 GHz of bandwidth)

Only 3 non-overlapping channels in 2.4 GHz!
802.11a/n Frequency Channels

RF Bands – 5 GHz

- 5.150 to 5.825GHz – 700MHz of Bandwidth

Over 20 non-overlapping channels in 5 GHz band
802.11n – What’s New

<table>
<thead>
<tr>
<th>Feature</th>
<th>802.11a/g</th>
<th>802.11n</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF Rates</td>
<td>6-54 Mbps</td>
<td>6-300 Mbps</td>
</tr>
<tr>
<td>Antennas</td>
<td>1(2)</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Bands</td>
<td>g (2.4GHz)</td>
<td>ng (2.4GHz)</td>
</tr>
<tr>
<td></td>
<td>a (5 GHz)</td>
<td>na (5GHz)</td>
</tr>
<tr>
<td>UDP Stream</td>
<td>3,500 pps</td>
<td>13,000 pps</td>
</tr>
<tr>
<td>TCP/IP Rates</td>
<td>1,000 pps</td>
<td>4,000 pps</td>
</tr>
</tbody>
</table>

802.11n offers significant higher packets per second (pps)!
802.11n – Streams

• More than one data streams
 – 802.11n radios can send 2 streams of data at a time if the conditions are right.
 – At least 2 antennas must be connected to each radio.
 – Multipath is important to keep the streams separate – the different streams take (slightly) different paths
 – The packet is divided between the streams to speed data transfer.
802.11n – MIMO Antennas

- Multiple Input Multiple Output (MIMO)
 - One antenna, three elements
 - Intentionally creates multiple paths (reflections)
 - Required for multiple streams
 - Three antenna leads
 - Omni-directional & directional
802.11n – Channel Bonding

- Channel Bonding
 - 2 Adjacent Channels can be used at the same time
 - Twice the data can be sent at a time
802.11 Security

• Security components
 • Authentication – allow those certified
 • Encryption – scramble data to make it unreadable
 • Integrity – protect against false data

• Standards Progression
 • WEP 64 & 128 (2000) – Weak, known faults
 • WPA – TKIP (2004) – Software patch to WEP
 • WPA2 – AES (2006) – Robust standard
 • adopted by NIST & US Govt.,
 • approved by NSA for secure communications

• 802.11i & WPA2
 • Passphrase – WPA2-PSK
 • RADIUS Service – WPA2-Enterprise
802.11 Diagnostics

- Web server
- PC Utility
- Process Values/Tags
- OPC
- HMI Faceplate
- RF Connection/Link
- Signal/Noise
- Traffic (packets)
- Network
 - Available Channels

![Diagram of 802.11 Diagnostics](image-url)
802.11 Industrial “Best Practices”

- Perform site testing
 - Existing wireless systems
 - RF paths/Antenna placement
- Use a “clear channel”
 - Consider 5 GHz band
 - Coordinate with IT (spectrum management)
- Design redundant RF paths, self-healing
- Select 802.11i security, turn it on!
- Select hardened hardware (environment/vibration)
- Weatherproof all connections
- Utilize diagnostics (monitor RF health/packets)
Oil & Gas - Refinery

Highlights
- Backhaul process data to control room
- Video for monitoring plant
- Mobile worker

DCS

802.11n
CFE - Cerro Prieto Geothermal Field

Cerro Prieto, Mexico
Geothermal Power Generation

- Geothermal Area
- Injection Well
- Production Well
- Sealing Layer
- Deposit
- Base of Deposit
- Heat Source
Plant History

- Installed Wireless HART devices and Foundation Fieldbus
 - Monitoring 17 steam wells
- Data sent back to DCS
- Reliability of fiber was not meeting requirements
- 8,000 meters of fiber replacement too expensive
- Fiber survives only 4-6 months and the time for repair is around 3 months.
Central Control Room communicating to 4 gateways over the 802.11g
Solution Installed
CFE Network Results

- Wireless performing very well for over 2 years
- Plans to add 5 more Access Point
 - Ease of expandability - reduced costs to improve monitoring
Objectives
- DCS Connection: 2 Offices / 2 Master PLCs
- Wellhead production monitoring: 40 sites / Remote PLC
- Tank Level monitoring: 14 sites / Remote PLC / 750ms update
- Mobile Worker connectivity
- Redundancy
Network Design Steps

- Preliminary System Design
 - PWD Software Design
- Site Verification Process
 - Visual Inspection of Sites
 - Channel Availability
 - Critical Link Verification
 - Verify Estimated Signal Strength
 - Battery power unit
 - Bill of Materials Generation
- Effort Estimate
 - System Design: 1 day
 - On-site testing: 2 days
 - On-going Support: 2 days
Tank Level System
Well Head System
Questions?

Jim Ralston
Wireless Product Strategy Manager
jralston@prosoft-technology.com
724-554-8498

www.prosoft-technology.com