Introduction to ISA100 Wireless

Jay Werb
WCI Technical Director

3 October 2017
Introduction to ISA100 Wireless

- Adoption of Industrial Wireless Instrumentation
 - Usage Classes
- Applications
- Network Architecture
- Overview of IEC 62734 standard

- Postscript: Wireless for Safety
Adoption of Industrial Wireless Classic Model

Christensen innovation model adapted for industrial wireless

Courtesy AIW LLC
Commonly Cited Benefits of Wireless Instrumentation

| Cost Savings | • Up to 90% of installed cost of conventional measurement technology can be for cable conduit and related construction.
| | • Typically: 1/5 the time, 1/2 the cost.
| | • New and scaled applications are now economically feasible. |
| Improved Reliability | • Wired sensors may be prone to failure in difficult environments.
| | • Wireless can add redundancy to a wired solution. |
| Improved Visibility | • Condition monitoring (equipment)
	• Process monitoring
Improved Control	• Add wireless to existing processes for more optimal control.
Improved Safety	• Safety related alarms
Applications
Industrial Wireless IoT in 2017

Major Applications

• Process Monitoring & Control

• Asset Health Monitoring & Analytics

• Safety Related Alarms
Top Usage Classes for Wireless Instrumentation

Automated Safety Instrumented Functions

Control

Alerts & Alarms

Monitoring & Compliance

Hours

Minutes

Seconds

Timeliness

Open Loop

Closed Loop

Process

Safety

Condition

Process

Courtesy AIW LLC
ISA100 Wireless
Major Application Types

• Asset Health Monitoring & Analytics
• Process Monitoring & Control
• Safety Alarms

• One network, all at the same time
Network Architecture
Example Network

Diagram showing a network with various components including:
- ISA100 Wireless Gateway
- IP Backbone
- BBR
- Asset Management
- Process Control
- Legacy HART Devices
- 4-20 mA
Legacy Network Architectures

Scale by Duplication
ISA100 Wireless IoT Network Architecture

Plant-Wide Network
Scale Through IP
ISA100 Wireless Network Architecture

- Redundant Gateway, System Manager, Security Manager
- Redundant Access Point (Backbone Router)
- Wide variety of Field Devices

Enterprise Scalability
IPv6 to the Devices

Enterprise Networks
Big Data Aggregation from Multiple Sites

Plant-wide Network
High Reliability and Availability
Duocast for redundancy
Scales to 1000s of devices

Stand Alone Network/Point Solution
Simple and Easy
Able to Grow
Internet of Things Enables Next Generation Automation Systems

Systems Today

Business Planning and Logistics
- Office Desktops and Servers
- Manufacturing Information Systems
- Supply Chain Applications

Manufacturing Operations and Control
- Supervisory Control
- Basic Control
- Sensors and Actuators
- Safety - Critical

L4
- Business Planning and Logistics
- Manufacturing Information Systems
- Supply Chain Applications

L3
- Manufacturing Execution Systems
- Optimizing Controllers (e.g., MVC/RTD)
- Process History

L2
- Supervisory Controllers
- Primary Operator Interface
- Asset Management System

L1
- Process Controllers (PCS)
- Sequence/Batch Controllers
- Programmable Logic Controllers (PLC)

LO
- Sensors, Transmitters & Control Valves
- Sensors and Actuator Networks

XOM diagrams from Lockheed Martin PIRA#OWG20161002

Systems Tomorrow

Business Planning and Logistics
- Office Desktops and Servers
- Manufacturing Information Systems
- Supply Chain Applications

Manufacturing Operations and Control
- Supervisory Control
- Basic Control
- Sensors and Actuators
- Safety - Critical

L4
- Manufacturing Execution Systems
- Optimizing Controllers (e.g., MVC/RTD)
- Process History

L3
- Supervisory Controllers
- Primary Operator Interface
- Asset Management System

L2
- Process Controllers (PCS)
- Sequence/Batch Controllers
- Programmable Logic Controllers (PLC)

LO
- Sensors, Transmitters & Control Valves
- Sensors and Actuator Networks

XOM diagrams from Lockheed Martin PIRA#OWG20161002
ISA100 Wireless Standard
Main Features of ISA100 Wireless

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 802.15.4 Radio</td>
<td>• Available from multiple high quality sources.</td>
</tr>
<tr>
<td>ETSI Compliant</td>
<td>• Compliant to new ETSI 300.328 v1.8.1</td>
</tr>
<tr>
<td></td>
<td>• Various modes of compliance, described in the standard</td>
</tr>
<tr>
<td>Robust</td>
<td>• Advanced coexistence and resiliency mechanisms at all levels</td>
</tr>
<tr>
<td>Secure</td>
<td>• Two layer AES 128 cryptography</td>
</tr>
<tr>
<td>IP based</td>
<td>• Future Proof</td>
</tr>
<tr>
<td>Object based</td>
<td>• Compact and Extensible</td>
</tr>
<tr>
<td></td>
<td>• Supports Tunneling</td>
</tr>
<tr>
<td>International Standard</td>
<td>• Standardized as IEC 62734</td>
</tr>
</tbody>
</table>
End-user requirements for Industrial wireless sensing

ISA100 solutions must meet all requirements simultaneously

Derived from USA Department of Energy and ARC User survey
Technical requirements for Industrial wireless sensing

| 1. Rate and Latency | • Publication rates 1-2 seconds
• Capable of 100 ms latency
• Controlled latency, ~50% publication rate
• 4 Hz publication in constrained configurations |
| 2. Mesh Networking | • IP Backbone: Engineered and scalable
• Mesh and non-mesh topology; access points and field devices
• Peer-to-peer communication
• Objects = Function blocks at device level
• Long and deterministic battery life |
| 3. Reliability | • Wireless transmission is deterministic
• Wireless transmission is received
• Wireless transmission is accurate
• Redundant communication paths to process control network |
| 4. Security | • Wireless transmission is secure; prevention & detection |
Two Levels of Security

- **TL Security**
 - Secure sessions between IP ports
 - Protects the data "Layer 5"

- **DL Security**
 - Hop-by-hop
 - Protects the mesh "Layer 2"

Data Flow
Robust Communications

Spectrum Analysis
Identifying Interferers
Monitoring Saturation

System Management
Device Configuration
Element Provisioning
Performance Monitoring

Policy Enforcement
Channel Allocation
Rules Creation
Blacklisting

2.4 GHz ISM shared band

Microwave Ovens
802.11b/g
Bluetooth

2.4 GHz Band Congestion

Frequency (GHz)
2.400 2.4835

ISA100.11a 2.4 GHz Solution
Channels 1-26

ISA100 – Ensured Coexistence with Many Wireless Networks
Conclusion

| Cost Savings | • Up to 90% of installed cost of conventional measurement technology can be for cable conduit and related construction.
| | • Typically: 1/5 the time, 1/2 the cost.
| | • New and scaled applications are now economically feasible. |
| Improved Reliability | • Wired sensors may be prone to failure in difficult environments.
| | • Wireless can add redundancy to a wired solution. |
| Improved Visibility | • Condition monitoring (equipment)
	• Process monitoring
Improved Control	• Add wireless to existing processes for more optimal control.
Improved Safety	• Safety related alarms
Postscript: Adoption of Wireless for Safety Design Principles
Safety Related Alarms

Applications
- Gas Detection
- Fire Prevention
- Level Detection
- Safety Showers
- Etc...

Wireless Requirements
- Controlled Quality of Service
 - Diagnostics!
- Low and Deterministic Latency
- Layered Open Architecture
 - e.g. ProfiSAFE
Industrial Wireless Safety Today

Automated Safety Instrumented Functions

Control

Alerts & Alarms

Monitoring & Compliance

- Open Loop
- Closed Loop
- Process
- Safety
- Condition
- Process

Hours
Minutes
Seconds
Timeliness

Courtesy AIW LLC
Adoption of Wireless for Safety Design Principles

• Latency and Availability
• Network Design Common Best Practices
• Security Matrix
• Denial of Service
• Some Other Considerations
• “...it is assumed that the risk analysis team has already determined that the protection layer comprised of an alarm with operator action generated from a wireless transmitter meets the specificity and independence criteria.”

• “...Risk reduction claimed is less than or equal to 10.”

From ISA84 WG8 draft.
Latency

- “Wireless sensor network data latency is the time between the acquisition of a measurement value and the delivery of that data via the wireless network to a gateway.” (ISA84 WG8 draft)

Availability

- Percentage of values received within the required response time. Can be measured per device or for an overall system.

Sidebar

- An exception may be a late-arriving alarm, or a stale state.
- Be alert for freshness requirements at times when there is no alarm.
Mesh Networks
Latency Considerations

- Neighborhood: ±1 second
- City Streets: ±10 seconds
- On Ramp: ±1 second
- Highway: ±0.1 second
Wireless publications are commonly acknowledged hop-to-hop, but not end-to-end.

Rely on field device’s clock for timestamp, freshness, etc.
Wireless may be considered a black channel.

Timestamp, freshness, etc are based on interrogation clock in this diagram.
Hybrid (Example)

Field Device

Gateway

Wireless Network

Publish heartbeat periodically.

Alarms are transmitted immediately. Acknowledged by gateway to squelch re-transmission.
Network Design
Common Best Practices

“... it is critical to closely **adhere to manufacturer’s best practices** when designing and laying out a wireless sensor network.”

- Conservative communication range
- Reporting Rates
 - Device and router battery capacity
 - Wireless channel capacity
 - Infrastructure capacity
- Centrally located infrastructure
- Control hop depth
- Path redundancy (Infrastructure and/or mesh)
- Avoid bottlenecks
- Use network layout and simulation tools
- Documentation!!!

Design network with plenty of margin, and monitor that margin carefully.

Derived from ISA84 WG8 draft.
Security Matrix

<table>
<thead>
<tr>
<th></th>
<th>Authentication</th>
<th>Verification</th>
<th>Encryption</th>
<th>Access Control</th>
<th>Key Management</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Integrity Check</td>
<td>Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sniffing</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Tampering</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Spoofing</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Replay Attack</td>
<td></td>
<td>✔</td>
<td>✔</td>
<td></td>
<td>✔</td>
</tr>
<tr>
<td>Routing Attack</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>DoS Attack</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authentication, Integrity Check, TAI, and Encryption are generally features of an interoperable communication standard such as ISA100 Wireless. User should not be able to disable or mis-apply these features.

Access Control and Key Management generally involve adherence to manufacturer’s best practices.

Similar table is in ISA84 WG8 draft.
Denial of Service

Radio standards and implementations should apply a variety of techniques to operate reliably in the presence of interference.

- Unintentional interference ≈ coexistence
- Intentional interference ≈ denial of service attack

Common strategies
- Spread spectrum modulation
- Redundant routing
- Channel blacklisting
- LBT Disable (Listen Before Talk)
 - LBT may be required due to regulations, policies, or coexistence with other systems
 - LBT is configurable in ISA100 Wireless
 - Regulations and/or policies may allow LBT to be disabled only at reduced power

Diagnostics!!!
- For example, LBT backoff counts
- Proven in Use
Some Other Considerations

Gateway-Host Communications
- Use well-known standards for Gateway-Host communications
- Security considerations for Gateway (ISA99)

Alarm Management
- General ISA18 considerations apply
- Large numbers of wireless devices may raise concerns about alarm floods

Battery Management
- Battery life should exceed instrument’s natural service interval
- Avoid network configurations and processes that randomize battery life

Data Quality Diagnostics
- Early detection and prevention of stale data conditions
- Include information about health & timeliness of wireless sensor data
- General device diagnostics

Network Diagnostics
- Include ample margin in the wireless design.
- Real-time recovery from reduced margin, while meeting availability targets.
- Diagnostics, HMI, processes for systematic loss of margin.
Adoption of Wireless for Safety Summary

Cost savings from wireless enable scaled adoption of safety applications

ISA100 Wireless is commonly used today for safety related alarms

Proven in use, following manufacturer best practices

(Not covered here: SIL-2 ratings should accelerate integration with safety systems)
Questions?